Unfolded recurrent neural networks for speech recognition
نویسندگان
چکیده
We introduce recurrent neural networks (RNNs) for acoustic modeling which are unfolded in time for a fixed number of time steps. The proposed models are feedforward networks with the property that the unfolded layers which correspond to the recurrent layer have time-shifted inputs and tied weight matrices. Besides the temporal depth due to unfolding, hierarchical processing depth is added by means of several non-recurrent hidden layers inserted between the unfolded layers and the output layer. The training of these models: (a) has a complexity that is comparable to deep neural networks (DNNs) with the same number of layers; (b) can be done on frame-randomized minibatches; (c) can be implemented efficiently through matrix-matrix operations on GPU architectures which makes it scalable for large tasks. Experimental results on the Switchboard 300 hours English conversational telephony task show a 5% relative improvement in word error rate over state-of-the-art DNNs trained on FMLLR features with i-vector speaker adaptation and hessianfree sequence discriminative training.
منابع مشابه
Speech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملThe IBM 2015 English conversational telephone speech recognition system
We describe the latest improvements to the IBM English conversational telephone speech recognition system. Some of the techniques that were found beneficial are: maxout networks with annealed dropout rates; networks with a very large number of outputs trained on 2000 hours of data; joint modeling of partially unfolded recurrent neural networks and convolutional nets by combining the bottleneck ...
متن کاملUnfolded Deep Recurrent Convolutional Neural Network with Jump Ahead Connections for Acoustic Modeling
Recurrent neural networks (RNNs) with jump ahead connections have been used in the computer vision tasks. Still, they have not been investigated well for automatic speech recognition (ASR) tasks. In other words, unfolded RNN has been shown to be an effective model for acoustic modeling tasks. This paper investigates how to elaborate a sophisticated unfolded deep RNN architecture in which recurr...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کامل